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SUMMARY

An anelysis for optimum controllers of general, linear, time-
invariant multiloop systems ls presented. Optimization 1s based on
minimizing mean-square or integrael-square errors for either stationary
statistical or transient inmputs, with limits and constraints of mean-
or integrel-square form. General representations of controller char-
acteristics, stable process characteristics, and error relations are
used. A method 1s shown of assuring stebllity of the multiloop system
during the optimization process and casting the multiloop controlled
system into an equivalent open loop so that.the methods of optimum fil-
ter theory can be used. General solutlions are obtained for four special
cases. Two examples for speed control of a turbojet engine 1llustrate
the methods developed in this report. The data for s controlled turbo-
Jet engine were in substential agreement with the theoretical results.

INTRODUCTION

One of the fundamental functions of controllers is the reduction
of certain variables, called errors, to small velues. This must be
accomplished with the dynaemical nsture of the system, the difficulty
of accurate measurement, the power requirements to manipulate wvalves,
and so forth, the random effects at the inputs, and the general
effects of nolse teken into consideratlon. At various stages in the
design of an over-all controlled system, the question arises as to
what computations the conftroller should mske to minimize the errors.

In this report, the problem of optimizing this computationsl aspect
of the controller is analyzed. Linear systems are assumed throughout.
Optimization is considered under elther transient or statistical inputs
and disturbances and is based on the minimization of mean-square errors
or integrel-square errors. Constraints and limits are included as mean-
square or Integral-square values.
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Most investigations in this field optimize the controlled system
by adjusting certaln psremeters of an otherwise fixed system. In this
report the more general spproach of optimizing the system by adjusting
the-entire frequency-response characteristics of the controllers is
used. This general epproach was first developed in reference 1 for
the design of filters, and a corresponding development is presented
herein for a closed-multiloop controlled system. New problems of
structural stebility and physical realizebility arise in the closed-
loop cases. In addition, necessary constraints and limits are included
in this snalysis.

The problem of optimizing the computetionasl aspect of the control-
ler is first reduced to a standard form by generalizing the frequency-
response charscteristics of both the process to be controlled and the
controller, the conditions of stability, and the specificatlons on
errors, constraints, and limits. The general solution for the optimum
controllers giving an ebsolute minimization of errors is derlved. In
addition, the expressions for the minimum errors, and the additional
errors suffered when nonoptimum controllers are used, are shown.

It is expected thet the results of this analysis, conducted at
the NACA Lewis laboratory, can be used as a basis for controller design,
as a standard under which controllers can be evaluated, or as a possible
basis of specifications on controller dynsmics. Applications of the
results of this analysis t0 several examples of controlling gas turbine
engines gre shown.

SYMBOLS

The following symbols are used in this report:

a engine or fuel servo dead time

b,c constents for describing spectral densities of inputs

C general linear operators representing controller

E stable linear operstors representing engine or process

e errors to be minimized by control and constrained variables
e* errors resulting from nonoptimum controller o

¥,G steble linear operators representing parts of controller

H general linear operators giving response of errors
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K loop gain

R arbitrary steble linear operatoxrs

t time

w inputs and disturbances affecting errors
X manipulated varisbles

N inputs to controller

z inputs and disturbances affecting y's o -
BF grbitrary stable linear operators

A Lagrangisn multipliexr

g,t _ engine time constants

Ty integral time constant

® frééuency

Subscripts:

Jsn,r,s,v sumation indices

opt optimum

Superscripts:

—_— complex conjugate

PV expected value or integral

Correlation function notation:

For statistical inputs,

SN
(WjEQ) = (EQWJ) = %; Zv(t)Wd(t + u) g~ lou du

For transient inputs,
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-]

wi(t) et at zy(u)  +iou du

(vyzv) = %=

(EJZV = (WJ Zv .
Matrix notation:

Ik indicates element of Jth Trow, k0 column of matrix E

ANATYSIS
Scope of Analysis
The scope of the analysis is summarized as follows:
1. Time-inveriant linear systems are assumed throughout.

2. The process to be comtrolled i1s inherently stable, with one
variable to be manipuleted by the controller.

3. Optimization is to be realized for either translent or station-
ary random inputs.

4. Optimization is based on minimizing mean-square or integral-
squere errors. The constraints and limits of the system are included
by constraining the mean-square or—integral-square values of “the vari-
ables involved.

5. Complete freedom in computation is assumed for the controller.

The same formal equations in the time domsin are obtained for the
nonstationary, time-varying cases as for the stationary, time-invariant
cases (ref. 2); but, even for the open-loop filter problem, the equa-
tions for the time-varying cases can be solved only by numerical means.
Extension of the analysis of this report to the time-varying cases would
require such techniques as those in reference 2. The linesr assumptions
do not completely preclude spplication of the methods of this report to
nonlinear systems. Many nonlinearities can be handled so as to allow
linear techniques without omitting the essential nature of the nonline-
arity (refs. 3 and 4).

When the process to be controlled is inherently unstable, the
techniques of preserving stebility of the closed-loop system are more
involved and these rather uncommon cases are not treated herein. The
extension of this analysis to cases having several manipulated varisbles
follows in a stralghtforward manner, but the final equations to be
golved are more complex. The fundamental development of these cases
is shown in the appendix.
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The optimization problem for transient inputs is the same as that
for statistical inputs (ref. 5) if meen squasres are replaced by integral
squares and if gpectral demsities are replaced by products of Fourier
transforms, as shown in the list of symbols. The anslysis which follows
was gulded by the desire to keep the systems studied and the problems
resolved as general as possible so that wide gpplications may be meade
of the results. In order to utlilize available open-locop theory, 1t was
necessary to determine an open loop equivalent to the actual closed
loops which would still assure structural stability of the actual sys-
tem during the optimization procedure. Techniques of accomplishing
this end were found for those cases of steble process characteristics.

Characterization of Process

The general form of the systems considered 1s shown in figure 1.
The time-invariant linear process to be controlled has certain lnputs
-x (in this case only one, such as a fuel-valve position signal) which
can be and are chosgen to be manipulated by the controller. There are
a certain number of outpute y (such as measured englne speed, meas-
ured engine speed error, throttle position, altitude pressure, etc.)
which can be and are chosen to be used by the controller. Each output
is affected by transient and statlsticael disturbences end inputs 2z of
altitude, air speed, throttle position, and so forth, and by the manipu-
lated verigble through a linear operstor E. In genersl, E would be a
rectanguler array of operators, but for the case of one manipulated
variable E 1is & column of operators. The genersl form of the process
to be controlled can be written operationaslly as

yj =23 +Ey - X (1)

This form follows directly from one method of obtaining these char-
acteristics. If x 1is held constant, measured y gives the nature of
z. If x 1is varied sinusoldelly, the harmonic anslysis over a large
number of cycles of measured y filters out any effects of 2z Tbecause
the harmonic content at any one frequency of elther a transient or sta-
tistical =z 1s relatively small. This can be seen from the following
analysis:

If

I}

x(t) = Re (%) t >0
=0 t<0
then

y(t) = z(t) + Re EE(icb) si(mzl as to®
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and
I+T AT
% e-10% v(5)at =% g0t 2(t)dt + E(in)
where
T = %%E (k 1s an integer)
and
I, =

The first term on the right side of the preceding equation
approaches zero as k-= for elther a transient or statisticel =z,
and

I4+T
e-10t y(t)at = E(lw) for L, ke

Hli-

Characterization of Controllers

The controller to be designed is to operate-on the ¥y's to give
x according to the operational equation

x=zC'j " Yy (2)
J .

As the optimization of only the computetionasl aspect of the controller
will be considered, the y's and the x are outputs and input, respec-
tively, which isolate the engine or process to be controlled and which
can be freely used in computation.

The C's of equation (2) are arbitrary linear operators which
need only to keep the closed-loop system stable. But; in order to
assure stabllity, the responses of all varlebles in the system to all
possible disturbances must be considered. These include varisbles and
disturbances internal to the C and E boxes. Because arbitrary
linear operators can be built up from stable structures and the small



NACA TN 2939 7

internal disturbances of such structures can be considered as gpplied
to the input or ocutput as small disturbances, the proper discussion of
stability should deal only with stable structures.

The controller operational equetion should therefore be written

X=ZFJ-yj+G‘X (3)

where FJ and G represent stable structures. The only new modes of

oscillgstion in the system in addition to the stable modes generated
by E, F, and G are those represented by the response
1

1-G- E FJEJ
J

the responses of all variasbles in the closed-loop system to all possible

disturbances. Each response will have the preceding factor multiplied

by E, F, or G, or by the sum of the products of these operators. It

can a8lso be shown that no loss of generallty 1s caused by allowlng

G = -ZFJEJ (4)

J

This criterion of stebility can be seen by deriving

in which case stability of the entire closed-loop system 1s assured.
The number of functions F still to be determined is the same as the
originel number of unknown functions C of equation (2).

There are alternative ways of obtainling the same over-all opersa-
tion expressed by equations (2) or (3), some of which may be unstable.
One genersl method, alweys stable, is shown by figure 2, in which the
Fj's are arbitrary steble structures.

Combining equations (1), (3), and (4) gives

X = E Fy * zj (5)
J
The original closed-loop system of figure 1 is now equivalent to the

open-loop system of figure 3, and this open-loop system is now compar-
able with the systems of reference 1,
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An expression for Cj of equation (2) is
)

C. = )
1+ ZEJFJ

J

Specifications on Controller
The errore to be minimized by the controller are characterized in

the same way as the y's as they have & controlled and an uncontrolled
part. The specifications_are writien

zlee;z/= aminim _ (8)
J

Where
eJ=W’J+HJ'X (7)
and H is any general linesr operator.

The A multiplier technique is used to allow edditional degrees
of freedom whenever the optimum values of the errors are not independent
or when constraints of mean-square form are to be imposed. The A's
may then sprear as parameters of the controller and are adjusted to give
a compromise among the vaerious dependent errors or to set the mean-
square values of the constrained varisbles.

Minimization of Errors

From equations (7) and (5), the expressions for the quantities to
be minimized or comstrained are

ej =WJ + HjZFn '_Zn
n

and.
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<0

2 - - =
z)\jej = Z A3 dw[z BiFo(zpws) + Z ByFy(zrs) +
J J m

v v

S Sl e e + <w:,»7jﬂ (&)

If the symbol F 1is used for the optimum system resulting in
error e and the symbol F + dF 1is used for any other system resulting
in error e¥, then

Z)\J;;GEI— ;ljgj\zjopt =JZ)\J Imda)Zﬁv [EJ(EVWJ) +

J

zlﬂj len(anVE\ +Jz Aj I“’ dw 2 8F [HJ(ZVFJ) + ZIHJIZFH(EnZvEl +
S [T S,
J - 7 5

The first two terms of the right-hand side of the preceding equa-
tion are equal because the integrands are merely conjugate. The third
term 1s nonnegative as 1t 1s equal to the mean-square error resulting
when F 1is ®F and w = O. Thus the necessary and sufficient condi-
tion for an absolute minimum is that

ij f“am Zﬁ?’v [ﬁj(szj) +Z|HJ|2Fn(anvﬂ =0 (9
J v

n

and then
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Because ©O8F, 1s eny arbltrary but structurally stable system,
equation (9) reduces to - '

> AE G + (> NIEIE) D Tl = F (11)
] J

n
for all velues of v for which there are a corresponding Fy end Cy,
and where R, represents any arbitrary stable structure.

Cases in Which =2z's Are Independent

A general solution of equation (11) has been found only for the
case in which the z's are independent ((z,z,) is & diagonal matrix).

In this case the general solution is

fv,l | | (12)

where

L1l
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The operators M and Z, represent minimum phase structures, and

A, = Av,l + Av,z where Av,l and K§,2 represent stable structures.

This solution follows the general pattern of reference 1 in the fre-
quency domain. The determinstion of M and 2, 1s the factorization

problem of reference 1. The function Av,l cen be obtained formally
by the following equation:

Ay,1(i0) = %‘J’\ g0t dtf Ay (1u) 6% au
t=0 U=—ep

From equation (8), a general expression for the minimum error gives

ijgj?)opt = Z Ay Imdm(wﬁj) - Imdm ZIAV,]_IZ (13)
J J - v

From equation (10), the difference between nonoptimum and optimum

errors is
2 2 ® 2
E Age%s© - E A€y = 5 o |M8F Z, | (14)
J J opt vV U

EXAMPLES
Exemple 1

The first example taken from s problem in the control of & turbo-
Jjet engine is illustrated in figure 4. The engine-speed error is fed
into the controller and a fuel-valve position signal 1s varied by the
controller. Linearized engine characteristics are represented by a
lag (ref. 6), and the fuel servo is considered as having only dead time
(the output reproduces the input a seconds later).

Then
e = y1 = engine speed error

W1 = 2z = negative of speed setting
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& -8lw
R Y

X = signal to fuel servo
M
From equation (12), since |M|2 = —,
1+ Tw]|
W2
M=
then
Al = Xll/zsaiu)z
Letting
2
(227) S .
171 fo + iwlz
then = - -
c
Rl e
aiw
A = M2
IR “Y N T
o - 2. 1/2 . galu
1 -1t iut _1L
l,l = "2"1_? € dt € P+ 1ia du
0 PEEY - s
- g ~l0t g4 o 1/2 D (t+a)
O I
)\11/2 o £8P
b + 1w
and
Fl = -e-ab(l + ’riﬂ))
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From equation (5a)

_ €1 4+ i)

L= T ep, et

From equation (13)
2
2 _c® o _2ab
(el)opt ~ 2b (1-e )

For the controller action derived, the responses of speed and x to
speed setting are

Speed = §-8Pg-81® . (gpeed setting)
and
x = £¢789(1 + i) - (speed setting)
The order property and thus the derivative action of the preceding equa-
tion indicates the large fuel flow and tempersture varistions encoun-
tered with the derived controller because no limit or constraint was
placed on these varisbles.
Exsmple 2
The second example in which the same control problem as in exam-
ple 1 is analyzed with a constraint on the mean- or integral-square
turbine temperature varistion and in which the servo lag has been
omitted 1s illustrated in figure 5. For this example,
€ =y = engine speed error
Wy = Z7 = negative of speed set
ez = turbine temperature
Wz =0

1

B =58 1955
Ho = 1l + olw

2771 ¥ Tio

X = signel to fuel servo
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M o+ A |1+ oiw)?

1+ T2

From equation (12), since IMIZ = ’

(A + xz)l/z + xgl/zciw
M= T+ i

then

Mzyp
(A + )\2)1/2 - le/zcﬂb

Letting

c2

(B2) o opE

then

7 Xic 7
Ay g = (b + 1) [(7\1 N Xz)l/z N )\zlﬁcb]

and
. A (1 + i)
1=- [(Xl + ) Z 1 lefzdg-][()\l +2eJH2 + gt Boto]

From equation (5a)

a1 (1 + ww) 7
LT rﬂl + W) HE 4 le/zdb][ﬂl )2+ le/zdiw] - AL

From equetion (13)
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Z}\j:;g N c? [Xz(l + 0%p2) + 2(n + xz)l/zle/zcb:l
opt
3 P

B [(xl REVVE - le/zob:‘z (15)

The responses of speed and x to speed setting are

A .
Speed = ] . (speed setting)

[(kl + )2 s kzlfzob][( M+ )2+ 21 oin
x = - F - (speed setting)

In all the preceding equations, only the ratio of the two A's 1is
effective. This ratio can now be set by evaluating the individual
errors that meke up equation (15). Choosing the ratio of the \'s
involves & compromise between tempersture and speed errors, as these
quantities vary oppositely to the ratio of Atls.

EXPERIMENTAL RESULTS

An axigl-flow turbojet engine was operated on a sea-level static
test stand to obtain some verification of the analysis. Figure 4 of
example 1 describes the system. The frequency response of engine speed
to fuel pressure obtained by harmonic anslysis of transient data is
shown in figure 6. An spproximation to this data gave T = 1.6 seconds
end a = 0.163 second.

A proportional-plus-integral controller of the form
1
C =-K [:l + T1im
3.5 to 11 and a range of 7T3's from 1 to 2.5 seconds. The integral-
square percentage error was obtained for each controller setting from
the response to a step in speed setting, and the results are shown in
figure 7.

] was used over a range of K!s (loop gain) from

The smallest error (of magnitude 0.41 sec) was obtained et K = 9.3
and T =+1.6 seconds. : :

The results of example 1 with b = O (step input) gave

_ -(1 + Tiw)
Copt - 1 - e—ai(.l)
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aln

1 - ==
-alw - 2 . 1l aiw
With € = " T’ qut = - = (l + Tmm)(i + _E_)' The. small deriv-
2 — o - R —

ative action (l + E%Q) indicated was not used. For T = 1.6 seconds

end a = 0.163 second, the preceding equation indicates

Tl,opt =7 = 1.6 seconds.

which is in substantial agreement with the data of figure 7.

SUMMARY OF RESULTS

An analysils was developed for the optimum controllers of general
linear closed-multilocp systems under either stationary statistical or -
transient inputs to minimize mean-square or integral-square errors.
General solutions were obtained for the case of independent inputs and
one manipulated variable. Several exsmples of this case were shown
for the speed control of a turbojet engine. Experimental dats from a
controlled axial-flow turbojet engine were in substantial agreement
with the theoretical results.

For the general multiloop systems of any number of masnipulated
variables, general solutions, which are shown in the appendix, were
obtained for four special cases. - :

Lewls Flight Propulsion Laeboratory <
National Advisory Committee for Aeromautilcs
Cleveland, Ohio, February 16, 1953
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APPENDIX - GENERAL MULTILOOP SYSTEMS

The scope of this analysis is the same as for the preceding analy-
sis except that it Includes any number of manipulated variables.

Characterization of system. - The general form of the system to be
considered is shown in figure 8. The genersl form of the process to be
controlled is written as follows in matrix notation:

y=2z+E.x (16)

The controller to be designed is to operate on the y's 1n order to
give the x's according to the operational equation

x=C-y (17)
or
x=F.y+0a-Xx (18)

where every element of the F and G matrices represents stable
structures. The new modes of oscillation generated by the closed loops
are represented by the responses

[1-a-Fe]t
No loss in generality is caused by allowing
G = - FE (19)

and stability is now assured. There are slternate ways of building the
same over-all operation expressed by equation (17) or (18), some of
which may be unsteble. One definitely stable method is shown in

figure 9.
Combining equations (16), (18), and (19) gives
x=F .z (20)

which represents an equivalent open-loop system. An expression for the
C of equation (17) is

c = (1 + FE)-1F (20e)

Specifications on controller. - The errors and constraints are
characterized in the same way as y. The specifications are thus
written
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~
E Xjejz = a minimum (21)

where
e=w+H-x (22)

and the elements of H are general linear operators.

Minimization of errors. - From equations (22) and (20), the expres-
sion for the quantities to be minimized or constreined is

€e =w+ HF - 2
Z MegZ = D dwl:z (8F) gylzyg) + D () yylZyny) +
v v
Zz (E‘)Jv(ﬁ);jn(zv_z-n) + (Wjajj

v

If the symbol F 1s used for the .optimum system resulting in
error e and the symbol F + 8F is used for any other system resulting
in error e*, then .- . - o

> gt - (2 xJ:J\Z> ] Z \ fm w > (B, [(EVWJ) > (EF)Jn(anv)J R
J J opt - v 7}
z Ay ) dw (H&F)Jv (ZVEJ) + @)Jn(—z-nzv) +
J v n

z y jw a ZZ (meF) ., (BF) | (2,7
J v n

Ll
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The first two terms of the right side of the preceding equation
are equel since the Integrands ere merely conjugate. The third term
is nonnegative as it 1s equal to the mean-square error resulting when
F 1s 8F and w = 0. Thus the necessary and sufficient condition
for an absolute minimum is that

Z A f"dﬂ)z (B&F) gy | (Zyy) + Z (BF) jn(znzy) | =0 (24)

end. then
/\2/ 5 ® —
> Mgy - > N 2 DI OWe INEEAES
J J opt  J ¥ n

(25)

Because each element of the OF matrix is any erbitrary but structur-
ally steble system, equation (24) reduces to

Dy B | Garg) + > (@) jaleiy) | = By (26)
J n

for all values of r and v running over the rows and columns of F,
and where every element of R represents any arbitrary staeble structure.

Equation (26) in matrix symbols becomes
H'\HFZ + H'AW = R (27)

where H' 1ndicates the trenspose of H and the matrices Z, W, and
A are

ZJV = (ZJE.V.)
Wiy = (WJE§)
A= diagonal (M, Mg, Azy + -« )

The general solution of equation (27) or (26) has not been found. The
factorization problem now seems to be that of factoring the Hermitlan
matrices (H'™H) end Z. Equation (27) has been solved for certain
speclal cases.
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Cage 1. - In the first case, H i1s a column matrix and the z's
are independent. This is the case solved herein (eq. (12)) in which
only the corresponding row of F (and C) is determined. It 1s noted
that, in general, if any row of C wvanishes, then the corresponding
row of F likewise vanishes.

Case 2. - In the second case, H is a diagonel matrix and the =z's
are Independent. The general solution for this case is
Fr-v- - _ A'Vr,l (28)
HyZy
where i _ -
_ ﬁrr(zﬁwr)"
57,
2 _ 2
[Brr|” = x|
(zv2y) = |Z¢|2

The functions H, and Z, are minimum phase structures and
Ayp = Avr,l + Ayyp p where Ay end K&r,z are steble structures.

Case 3. - Every element of H and Bl is stable and the z's
are independent in the third case. The solution for this case is

-1
Fo = - (E )rsAsv,l
rv zé Zy

where

(wgZy)
v
Zy 1s defined in Case 2, and A, 1is to be separated into the two
parts Agv,1 + Agv,2 as in Case 2.

Cage 4. - In the fourth case, Hyx = BDjMjx and the z's are
independent where BB = Djﬁd =1 sand every element of M and ML 1is
stable. The solution for this case is



NACA TN 2939 2l

(L) A
N

where
BDy(vgzy)
sv * __—ﬁi:"'

Here Z, is defined in Case 2, and A, 1s to be separated into the
two parts Asv,l + Asv,z as in Case 2.

A
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Figure 1. - General linear closed-loop controlled system; one

manipulaeted variable.

Manipulated
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Engine, servo-
motors,
instruments,
ete.

Circle indicates operation of addition.

l ¢ |C Controller
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x I—— e B
z]_ A A
1
’ y]-\\*?-—lnputs to controller
E
2 yz/
%Wl Disturbances and inputs
Hl el
B, __)_éwz_)___ " Errors to be minimized
2 by control
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Hz e3
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Figure 2. - Representation of general linear controlled system
using only stable boxes E, F, &nd G; one manipulated varl-

gble; steble if- G = - Z EJFJ.
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